
ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
Tutorial: High-Performance Embedded Programming with the Intel® AtomTM Platform RECRLAB@OU

* This material is based upon work supported by Intel® Corporation 1 Daniel Llamocca

TBB: parallel_reduce

OBJECTIVES
▪ Learn the basics of Threading Building Blocks (TBB) Library in C++: parallel_reduce

▪ Execute parallel applications using TBB.

USEFUL INFORMATION
▪ Refer to the Tutorial: Embedded Intel for the source files used in this Tutorial.

▪ Refer to the board website or the Tutorial: Embedded Intel for User Manuals and Guides for the Terasic DE2i-150 Board.

▪ Board Setup: Connect the monitor (VGA or HDMI) as well as the keyboard and mouse.

o Refer to the DE2i-150 Quick Start Guide (page 2) for a useful illustration.

ACTIVITIES

FIRST ACTIVITY: ACCUMULATE AN ARRAY

▪ For an n-element vector, we want to accumulate all 𝑎(𝑖) elements in the vector. Here, we will use parallel_reduce.

▪ Example: a = [-1.2 2.3 3.6 6.7 0.3 0.35 2.1 0.7 5.1 -1.1]

▪ Result: sum = -1.2 + 2.3 + 3.6 + 6.7 + 0.3 + 0.35 + 2.1 + 0.7 + 5.1 - 1.1

Serial implementation
▪ This is a straightforward implementation as a function:

float SerialSumFun(float a[], size_t n) {

 float sum = 0;

 for (size_t i=0; i!=n; ++i)

 sum += a[i];

 return sum;

}

Parallel implementation

▪ The sum of the vector can be computed by dividing the vector in several parts, computing the sum for each part (in parallel)
and then add the results for each part to get the whole sum.

▪ Reduction operation: Applying an operation on all members of group (e.g.: sum, max, min) and return a result.

✓ The parallel_reduce template indicates the iteration space, as well as the object:

float ParallelSumFun(float a[], size_t n) {

 SumFum sf(a);

 parallel_reduce(blocked_range<size_t>(0,n), sf);

 return sf.my_sum; }

✓ The class SumFun specifies the details of the reduction (e.g.: how to accumulate subsums and combine them):

class SumFun {

 float * my_a; // 'private' access (default access level)

public:

 float my_sum;

 void operator()(const blocked_range<size_t> &r) {

 float *a = my_a;

 float sum = my_sum; // to not discard earlier accumulations

 for (size_t i=r.begin(); i!=r.end(); ++i)

 sum += a[i];

 my_sum = sum;

 }

 SumFun (SumFun &x, split): my_a(x.my_a), my_sum(0) {}

 void join (const SumFun &y) { my_sum += y.my_sum; }

 SumFun (float a[]): my_a(a), my_sum(0) {} // member initialization in constructor

};

http://www.secs.oakland.edu/~llamocca/emb_intel.html
https://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&CategoryNo=11&No=529
https://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&CategoryNo=11&No=529
http://www.secs.oakland.edu/~llamocca/emb_intel.html

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
Tutorial: High-Performance Embedded Programming with the Intel® AtomTM Platform RECRLAB@OU

* This material is based upon work supported by Intel® Corporation 2 Daniel Llamocca

▪ Fig. 1 provides details about some of the syntax. An object sf is first created with argument a (a pointer). The

parallel_reduce function performs the reduction operation as specified in the class void operator () function. But

instead of doing it sequentially, it recursively divides the iteration space (range) and tries to compute the sub-reductions in
parallel. Syntax-wise, this is specified in the splitting constructor and the merging method.

▪ Splitting constructor: SumFun (SumFun &x, split): my_a(x.my_a), my_sum(0) {}

✓ When worker threads available, the splitting constructor for the body is invoked. It forks a body (function object) into
two bodies that can run concurrently.

✓ It splits x into x and the newly constructed object. After the constructor runs, x and the newly constructed object

represent the two pieces of the original x.

✓ Arguments: reference to original object (SumFun &x), and a dummy argument of type split (this distinguishes the

splitting constructor from a copy constructor).
✓ Member initialization: my_a = x.my_a, my_sum = 0.

▪ Merging method: void join (const SumFun &y) { my_sum += y.my_sum; }

✓ It must be present alongside the splitting constructor for parallel_reduce to work.

✓ For each split of the body, it causes method join to merge result from the bodies.
✓ It is invoked when a task finishes its work and needs to merge the result back with the main body of work. The parameter

passed to the method (y) is the result of the work.

▪ Parameterized constructor: SumFun (float a[]): my_a(a), my_sum(0) {}

✓ It defines the initialization of the constructor members when the object is declared: my_a = x.my_a, my_sum = 0.

▪ Operator: void operator()(const blocked_range<size_t> &r) { … }

✓ The operator cannot be const copied (it needs to store intermediate results) and it needs to be able to merge.

✓ The operation sum += a[i] = F(sum, f(a[i])) is called the reduction function.

✓ In general, we can apply a function to a[i]. In this case, we have 𝑓(𝑎[𝑖]) = 𝑎[𝑖].

✓ parallel_reduce performs a parallel reduction (e.g.: accumulate result for subrange) by applying the function defined in

the operator() to subranges. It returns the result of the reduction.

✓ When a worker thread is available (as decided by the task scheduler) parallel_reduce invokes the splitting constructor to

create a subtask for the worker. When the subtask completes, parallel_reduce uses method join to accumulate the result

of the subtask. For each such split of the body, it invokes method join to merge the results from the bodies. Fig. 2 shows
a splitting case for n = 6. Note that there are multiple possible executions and we only show one.

Figure 1. Object created and steps inside the reduction.

SumFum sf(a);
my_a = a

my_sum = 0

sf

parallel_reduce(blocked_range<size_t>(0,n), sf);

x

x y

declared in merging method:
void join (const SumFun &y) { my_sum += y.my_sum; }

result from body y

declared in split constructor:

SumFun (SumFun &x, split): my_a(x.my_a), my_sum(0) {}

my_a = x.my_a argument my_a is set to the argument of body x

reduction applied to range [0,n) for object sf

[0,n)

[0,n/2) [n/2,n)

my_sum = 0 argument my_sum is initialized to 0 in the new body

each body can compute the reduction operation as defined
in void operator () for the given range

Instead of computing the reduction in one thread, it tries to compute many reductions concurrently:
The range is split recursively so that a body can be split.

body split (can occur recursively or not occur at all):

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
Tutorial: High-Performance Embedded Programming with the Intel® AtomTM Platform RECRLAB@OU

* This material is based upon work supported by Intel® Corporation 3 Daniel Llamocca

▪ Application files: accum.cpp

✓ In this example, a is a constant vector with n = 10 elements.

✓ The operation 𝑠𝑢𝑚 ← ∑ 𝑎(𝑖)𝑛−1
𝑖=0 is implemented both in serial and parallel form.

✓ Note that we use using namespace tbb. This avoids having to include the prefix tbb before each identifier used by the

tbb library (e.g.: parallel_reduce, parallel_for, blocked_range).

▪ Compile this application:

g++ accum.cpp -ltbb -o accum

▪ Execute this application:

./accum

Figure 2. A split-join sequence for n=6. Iteration space: [0,6). The range was only split into two subranges.

split iteration space in half

reduce 1st half of iteration space

3 4 5

Available Worker

steal 2nd half of iteration space

3 4 5

wait for thief

reduce 2nd half of iteration space into y

0 1 2

3 4 5f

0 1 2

f f

f f f

join body xwith body y:
x.join(y);

create sub-task:
SumFun y(x,split());

3 4 50 1 2

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
Tutorial: High-Performance Embedded Programming with the Intel® AtomTM Platform RECRLAB@OU

* This material is based upon work supported by Intel® Corporation 4 Daniel Llamocca

SECOND ACTIVITY: ACCUMULATE SQUARED-ELEMENTS OF AN ARRAY

▪ For an n-element vector, we want to accumulate all squared 𝑎(𝑖) elements in the vector. Here, we will use parallel_reduce.

▪ Example: a = [0 1 2 3 4 5 6 7 8 9]

▪ Result: sum = 02 + 12 + 22 + 32 + 42 + 52 + 62 + 72 + 82 + 92

Parallel implementation
▪ The sum of the squared elements of a vector can be computed by dividing the vector in several parts, computing the sum

for each part (in parallel) and then add the results for each part to get the whole sum.
▪ Reduction operation: Applying an operation on all members of group (e.g.: sum, max, min) and return a result.

✓ This is very similar to the example in the First Activity. We show an alternative coding style.

✓ The parallel_reduce template indicates the iteration space, as well as the object:

int main () {

 int tab[10];

 int i;

 for (i = 0; i < 10; i++) tab[i] = i; // Data initialization

 MyOp op(tab); // the object 'op' is created with 'tab' as the argument

 parallel_reduce (blocked_range<size_t> (0,10), op);

 cout << op.a << "\n";

 return 0;

}

✓ The class MyOp specifies the details of the reduction (e.g.: how to accumulate subsums and combine them):

class MyOp {

 const int *my_tab;

public:

 int a;

 void operator () (const blocked_range<size_t> &r)

 {

 const int *tab = my_tab;

 int ta = a;

 for (size_t i = r.begin(); i != r.end(); ++i)

 ta =+ tab[i]*tab[i]; //F(ta, tab[i]); --> reduction function

 a = ta;

 }

 MyOp (MyOp &x, split): my_tab (x.my_tab), a(0) {} // mytab = x.my_tab, a = 0

 void join (const MyOp &y) { a += y.a;} // a = F(a,y.a)

 MyOp (const int tab[]): my_tab(tab), a(0) {} // my_tab = tab, a = 0.

};

▪ Here, the function applied to tab[i] is: 𝑓(𝑡𝑎𝑏[𝑖]) = 𝑡𝑎𝑏[𝑖]2.

▪ Note that parallel_reduce can also be used as a slightly mixed together map/reduce. We could have performed the squaring

operation (on an element) in a parallel_for, then use parallel_reduce to sum all those elements. But we sort of combine the

operations into just parallel_reduce.

▪ Application files: accum_sq.cpp

✓ In this example, a is a constant vector with n = 10 elements.

✓ The operation 𝑠𝑢𝑚 ← ∑ 𝑎(𝑖)2𝑛−1
𝑖=0 is implemented both in serial and parallel form.

✓ Note that we use using namespace tbb. This avoids having to include the prefix tbb before each identifier used by the

tbb library (e.g.: parallel_reduce, parallel_for, blocked_range).

▪ Compile this application:

g++ accum_sq.cpp -ltbb -o accum_sq

▪ Execute this application:

./accum_sq

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
Tutorial: High-Performance Embedded Programming with the Intel® AtomTM Platform RECRLAB@OU

* This material is based upon work supported by Intel® Corporation 5 Daniel Llamocca

THIRD ACTIVITY: COMPUTATION OF

▪ To compute , we can use the Leibniz formula:

𝜋

4
= ∑

(−1)𝑘

2𝑘 + 1

∞

𝑘=0

▪ The formula converges very slowly; however, it uses simple computations.

▪ Since the operation at every index is independent, we can use parallel_reduce to increase the computation speed.

Parallel implementation

▪ The equation is a sum of a function 𝑓(𝑘) =
(−1)𝑘

2𝑘+1
 applied to every index 𝑘. Using N=100,000 iterations can produce a precise

enough value of . So, we divide the iterations (a vector whose elements are the indices 𝑘) into many portions, computing

the sum for each part (in parallel) and then add the results for each part to get the whole sum.

✓ The parallel_reduce template indicates the iteration space, as well as the object:
int main(int argc, char **argv) {

 ...

 MySeries x; // the object 'x' is created with no arguments

 parallel_reduce (blocked_range<size_t> (0,N),x);

 ...

 cout << setprecision(8); cout << 4*x.my_sum << "\n";

 return 0;

}

✓ The class MySeries specifies the details of the reduction (e.g.: how to accumulate partial sums and combine them):

class MySeries {

public:

 double my_sum;

 void operator()(const blocked_range<size_t> &r) {

 double sum = my_sum;

 double denom;

 for(size_t i=r.begin(); i!=r.end(); i++) {

 denom = i*2.0 + 1.0;

 if (i%2 == 1) { denom = -denom; }

 sum += 1.0/denom; }

 my_sum = sum;

 }

 MySeries (MySeries &x, split): my_sum(0) {} // my_sum = 0

 void join (const MySeries &y) { my_sum += y.my_sum; }

 MySeries (): my_sum (0) {} // my_sum = 0. Constructor member initialization

};

▪ Here, the function applied to 𝑘 is: 𝑓(𝑘) =
(−1)𝑘

2𝑘+1
.

▪ Application files: mypi.cpp

✓ Here, 𝜋 computation is implemented both in sequential and parallel (TBB) form.

✓ x: constant vector with N elements. N: parameter of main().

✓ We use using namespace tbb to avoid including the prefix tbb before each identifier used by the tbb library.

▪ Compile this application: g++ mypi.cpp -ltbb -o mypi

▪ Execute this application: ./mypi <# of iterations>

✓ Example: ./mypi 100000

▪ Table I lists the computation times for both the sequential and the parallel (TBB) implementation for different number of
iterations. There is improvement in the processing time for large number of iterations.

TABLE I. COMPUTATION TIMES (US) FOR DIFFERENT # OF ITERATIONS (𝑁) FOR THE 𝜋 COMPUTATION (DELL INSPIRON)

N
Processing Time (us)

Sequential TBB

50,000 1756 1916

100,000 1915 1546

200,000 6301 2482

500,000 11704 5593

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
Tutorial: High-Performance Embedded Programming with the Intel® AtomTM Platform RECRLAB@OU

* This material is based upon work supported by Intel® Corporation 6 Daniel Llamocca

FOURTH ACTIVITY: DOT PRODUCT

▪ For two n-element vectors, we want to compute the dot product. Here, we will use parallel_reduce.

▪ Example: a = [0 1 2 3 4 5 6 7 8 9], b = [10 9 8 7 6 5 4 3 2 1]

▪ Result: sum = 0*10 + 1*9 + 2*8 + 3*7 + 4*6 +5*5 + 6*4 + 7*3 + 8*2 +9*1 = 165

Parallel implementation
▪ The dot product can be computed by dividing the vectors in several parts, computing the dot product for each part (in

parallel) and then add the results for each part to get the whole sum.
▪ Reduction operation: Applying an operation on all members of group (e.g.: sum, max, min) and return a result.

✓ The parallel_reduce template indicates the iteration space, as well as the object:

int main (int argc, char **argv) {

…

 // a,b: pointers to N-element vectors

 Dotp op(a,b); // the object 'op' is created with arguments ‘a’, ‘b’

 parallel_reduce (blocked_range<size_t> (0,N), op);

 cout << op.my_sum << “\n”;

…

✓ The class Dotp specifies the details of the reduction (e.g.: how to accumulate subsums and combine them):

class Dotp {

 double *my_a;

 double *my_b;

public:

 double my_sum;

 void operator () (const blocked_range<size_t> &r) {

 double *a = my_a;

 double *b = my_b;

 double sum = my_sum;

 for (size_t i = r.begin(); i != r.end(); ++i)

 sum += a[i]*b[i]; //F(sum, a[i], b[i]); --> reduction function

 my_sum = sum;

 }

 Dotp (Dotp &x, split): my_a (x.my_a), my_b (x.my_b), my_sum(0) {} // my_a = x.my_a, my_sum = 0

 void join (const Dotp &y) { my_sum += y.my_sum; }

 Dotp (double *a, double *b): my_a(a), my_b(b), my_sum(0) {} // my_a = a, my_b = b, my_sum = 0

};

 When using objects with parameterized constructors, you might need to declare a group of them and then initialize
each via the parameterized constructors. In the case of the functors, you can then execute the operation by calling

the functor (in this example, this means calling parallel_reduce).

 In some cases, it might be more convenient to declare an array of objects with parameterized constructors, which
need to be initialized. The syntax in this case is a little bit different than expected. For example, to declare and
initialize (via parameterized constructor) a group of objects of class Dotp, you can do:
 Dotp *op = (Dotp *) malloc (sizeof(Dotp)*10); // declare 10 objects of Dotp class

 for (i=0; i<10; i++) op[i] = Dotp(x[i],y[i]); // x[i],y[i]: vectors. x,y: 2D arrays

 Then, if your object is a functor (e.g.: Dotp), you can execute its operation (here, it means calling parallel_reduce).

▪ Here, the function applied to a[i] and b[i] is: 𝑓(𝑎[𝑖], 𝑏[𝑖]) = 𝑎[𝑖] × 𝑏[𝑖]

▪ Application files: dot_product.cpp

✓ Here, the dot product computation is implemented both in sequential and parallel (TBB) form.
✓ In this example, a and b are vectors with N elements (initialized with random data). N: parameter of main().

✓ We use using namespace tbb to avoid including the prefix tbb before each identifier used by the tbb library.

▪ Compile this application: g++ dot_product.cpp -ltbb -o dot_product

▪ Execute this application: ./dot_product <# of elements>

✓ Example: ./dot_product 200000

▪ We made extensive comparisons between the sequential and TBB implementations. The conclusion is that for this application,

TBB implementation does not improve the processing time. For very large number of elements (~5 million) there was
negligible improvement. A main reason for this might be that the reduction function (product) is very simple.

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
Tutorial: High-Performance Embedded Programming with the Intel® AtomTM Platform RECRLAB@OU

* This material is based upon work supported by Intel® Corporation 7 Daniel Llamocca

FIFTH ACTIVITY: GET THE MAXIMUM OF EACH MATRIX ROW

▪ For NV n-element vectors, we want to get the maximum value of each vector. Here, we will use parallel_reduce combined

with parallel_for.

✓ The NV vectors can be thought of as an array A with NV rows and n columns.

▪ Example: A[0][0] = 0.25; A[0][1] = 0.5; A[0][2] = -3.2; A[0][3] = -4.5; A[0][4] = -2.0;

A[1][0] = 2.0; A[1][1] = 3.25; A[1][2] = 5.75; A[1][3] = 6.25; A[1][4] = 7.15;

A[2][0] = 0.25; A[2][1] = -3.5; A[2][2] = 0.25; A[2][3] = 0.25; A[2][4] = 0.25;

A[3][0] = 2.0; A[3][1] = 3.25; A[3][2] = 0.75; A[3][3] = -6.5; A[3][4] = 1.5;

A[4][0] = 3.0; A[4][1] = -3.25; A[4][2] = 0.75; A[4][3] = -6.5; A[4][4] = 1.5;

A[5][0] = -2.5; A[5][1] = -3.25; A[5][2] = -0.15; A[5][3] = -6.5; A[5][4] = -1.5;

▪ Result: R = [0.5 7.15 0.25 3.25 3.0 -0.15]’

Parallel implementation

▪ The computations of the maximum value for each vector can be processed in parallel (via parallel_for).

▪ Within each vector, the result (maximum value) can be computed by dividing the vectors in several parts, computing the
maximum for each part (in parallel) and then compare the results for each part to get the maximum value.

▪ Reduction operation: Here, the function applied to A[i] (a n-element vector) is: 𝑓(𝐴[𝑖]) = max (𝐴[𝑖])]

✓ First, matrix A is initialized and a function (get max. value of a vector: getmax_tbb) is executed in a parallel_for loop:
int main() {

 size_t i;

 double **A, *m;

 size_t NV = 6; // # of vectors

 size_t N = 5; // length of each vector

 A = (double **) calloc (NV, sizeof (double *)); // allocating memory for 'NV' vectors

 for (i = 0; i < NV; i++) A[i] = (double *) calloc (N, sizeof (double));

 m = (double *) calloc (NV, sizeof(double));

 A[0][0] = 0.25; A[0][1] = 0.5; A[0][2] = -3.2; A[0][3] = -4.5; A[0][4] = -2.0;

 A[1][0] = 2.0; A[1][1] = 3.25; A[1][2] = 5.75; A[1][3] = 6.25; A[1][4] = 7.15;

 A[2][0] = 0.25; A[2][1] = -3.5; A[2][2] = 0.25; A[2][3] = 0.25; A[2][4] = 0.25;

 A[3][0] = 2.0; A[3][1] = 3.25; A[3][2] = 0.75; A[3][3] = -6.5; A[3][4] = 1.5;

 A[4][0] = 3.0; A[4][1] = -3.25; A[4][2] = 0.75; A[4][3] = -6.5; A[4][4] = 1.5;

 A[5][0] = -2.5; A[5][1] = -3.25; A[5][2] = -0.15; A[5][3] = -6.5; A[5][4] = -1.5;

 parallel_for(int(0), int(NV), [&] (int i) {

 m[i] = getmax_tbb(A[i],N); });

 for (i = 0; i < NV; i++) printf ("m[%ld] = %4.4f\n",i,m[i]);

 for (i = 0; i < N; i++) free (A[i]); free(A); free (m);

 return 0;

}

✓ In the function, the parallel_reduce template indicates the iteration space, as well as the object:
double getmax_tbb (double *a, size_t L)

 MyOp op(a);

 parallel_reduce (blocked_range<size_t> (0,L),op);

 return op.my_max;

}

✓ The class MyOp specifies the details of the reduction (e.g.: how to get the maximum of each portion and combine them):

class MyOp {

public:

 double *my_a;

 double my_max;

 void operator() (const blocked_range<size_t> &r) {

 double *a = my_a;

 double max = my_max;

 // Get the maximum for a portion of the vector:

 for (size_t i = r.begin(); i!= r.end(); i++) { if (a[i] >= max) max = a[i]; }

 my_max = max;

 }

 MyOp (MyOp &x, split): my_a (x.my_a), my_max(x.my_a[0]) {}

 void join (const MyOp &y) { if (y.my_max > my_max) my_max = y.my_max; } //get max of two subresults

 MyOp (double *a): my_a(a), my_max(my_a[0]) {} // my_max = my_a[0]

 MyOp () {}

};

▪ Application files: vm.cpp

▪ Compile this application: g++ -std=c++11 vm.cpp -ltbb -o vm

▪ Execute this application: ./dot_product

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
Tutorial: High-Performance Embedded Programming with the Intel® AtomTM Platform RECRLAB@OU

* This material is based upon work supported by Intel® Corporation 8 Daniel Llamocca

SIXTH ACTIVITY: ADD A GROUP OF VECTORS ELEMENT-WISE

▪ For NV n-element vectors, we want to add them all element-wise. Here, we will use parallel_reduce combined with parallel_for.

✓ The NV vectors can be thought of as an array A with NV rows and n columns.

▪ Two approaches:

✓ parallel_for + parallel_reduce: The n computations (from k=0 to n-1) can be performed in parallel. For every index, the

computation is a sum of NV elements; this is a reduction. Fig. 3 illustrates the approach.

 The class SumFun specifies the details of the reduction (how to accumulate subsums).

class SumFun {

 double *my_a;

public:

 double my_sum;

 void operator() (const blocked_range<int> &r) {

 double *a = my_a;

 double sum = my_sum;

 for (int i=r.begin(); i != r.end(); ++i)

 sum += a[i];

 my_sum = sum;

 }

 SumFun (double a[]): my_a(a), my_sum(0) {}

 SumFun (SumFun &x, split): my_a(x.my_a), my_sum(0) {}

 void join (const SumFun &y) {my_sum += y.my_sum; }

};

 We use the parallel_for template to perform n computations concurrently. Iteration space: [0,n-1]. Each computation

(sum of NV elements) is carried out via the parallel_reduce template (iteration space: [0,NV-1]).
double getsum_tbb (double **ai, int ki, int LC) {

 double t[LC]; // LC=nv

 for (int i = 0 ; i < LC; i++) t[i] = ai[i][ki];

 SumFun pf(t);

 parallel_reduce (blocked_range<int>(0,LC), pf);

 return pf.my_sum;

}

int main (int argc, char **argv) {

 const int n = 10; // number of elements per vector

 const int nv = 8; // number of vectors

 int i, j;

 double *p, **a;

 p = (double *) calloc (n,sizeof(double)); // setting data to 0's

 a = (double **) malloc (nv*sizeof(double *));

 for (i = 0; i < nv; i++) a[i] = (double *) malloc (n*sizeof(double));

 // Assigning random data

 for (i = 0; i < nv; i++)

 for (j = 0; j < n; j++) a[i][j] = sin(i*0.1 + j *0.3);

 // Parallel Approach:

 parallel_for (blocked_range<int>(0,n), [&] (const blocked_range<int> r) {

 for (int k = r.begin(); k != r.end(); ++k)

 p[k] = getsum_tbb(a,k,nv);

 });

 return 0;

}

✓ parallel_reduce: Here, the reduction is applied

to the summation of vectors; the final result

is one vector. Iteration space: [0,NV-1].

 Every step of the reduction adds up
vectors. Fig. 4 shows an execution

example for NV=4.

 This is an odd example for illustrative
purposes: in some applications, you need
to reduce into one vector rather than just
into one element.

Figure 3. Parallel approach to add up NV

vectors element-wise.

...

NV

n

...

...

...

..
.

k=0 k=2 k=n-1 k

a[0]

a[
N

V
-1

]

p[k]

i

p

k

..
.

...

...
n

...

...

a[0]

p

...

...

...
...

a[3]

a[2]

a[1]

Figure 4. Parallel approach where a reduction adds up vectors resulting in one

vector. Example with NV=4.

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
Tutorial: High-Performance Embedded Programming with the Intel® AtomTM Platform RECRLAB@OU

* This material is based upon work supported by Intel® Corporation 9 Daniel Llamocca

 The class SumFun specifies the details of the reduction (how to accumulate subsums).
class SumVec {

 double **my_hp;

 int nb; // size of output vector

public:

 double *my_sum;

 void operator () (const blocked_range<int> &r) {

 double *sum = my_sum;

 for (int i=r.begin(); i!=r.end(); ++i)

 for (int j=0; j < nb; j++)

 sum[j] += my_hp[i][j];

 my_sum = sum;

 }

 SumVec (double *h_i, double **hp_i, int nb_i) {

 my_sum = h_i; my_hp = hp_i; nb = nb_i;

 }

 SumVec (SumVec &x, split) {

 my_hp = x.my_hp; nb = x.nb; // all inputs should be included.

 // we must allocate its own my_sum

 my_sum = (double *) calloc (nb, sizeof(double)); // Setting data to 0’s

 }

 void join (const SumVec &y) {

 for (int j=0; j < nb; j++)

 my_sum[j] = my_sum[j] + y.my_sum[j];

 free (y.my_sum); //freeing up my_sum when bodies are joined.

 }

};

 We use the parallel_for template to perform n computations concurrently. Iteration space: [0,n-1]. Each computation

(sum of NV elements) is carried out via the parallel_reduce template (iteration space: [0,NV-1]).
double getsum_tbb (double **ai, int ki, int LC) {

 double t[LC]; // LC=nv

 for (int i = 0 ; i < LC; i++) t[i] = ai[i][ki];

 SumFun pf(t);

 parallel_reduce (blocked_range<int>(0,LC), pf);

 return pf.my_sum;

}

int main (int argc, char **argv) {

 const int n = 10; // number of elements per vector

 const int nv = 8; // number of vectors

 int i, j;

 double *p, **a;

 p = (double *) calloc (n,sizeof(double)); // setting data to 0's

 a = (double **) malloc (nv*sizeof(double *));

 for (i = 0; i < nv; i++) a[i] = (double *) malloc (n*sizeof(double));

 // Assigning random data

 for (i = 0; i < nv; i++)

 for (j = 0; j < n; j++) a[i][j] = sin(i*0.1 + j *0.3);

 // Parallel Approach:

 SumVec sf(p,a,n);

 parallel_reduce(blocked_range<int>(0,nv), sf);

 return 0;

}

▪ Application files: sumvecs.cpp

▪ Compile this application: g++ -std=c++11 sumvecs.cpp -ltbb -o sumvecs

▪ Execute this application: ./sum_vecs

▪ To test for memory issues, use the valgrind program.

g++ -Wall -std=c++11 sumvecs.cpp -ltbb -g -o sumvecs

valgrind ./sumvecs

	Objectives
	Useful Information
	Activities
	First Activity: Accumulate an array
	Second Activity: Accumulate squared-elements of an array
	Third Activity: Computation of (
	Fourth Activity: Dot Product
	Fifth Activity: Get the maximum of each matrix row
	Sixth Activity: Add a group of vectors element-wise

